Deep neural networks have shown their vulnerability to adversarial attacks. In this paper, we focus on sparse adversarial attack based on the $\ell_0$ norm constraint, which can succeed by only modifying a few pixels of an image. Despite a high attack success rate, prior sparse attack methods achieve a low transferability under the black-box protocol due to overfitting the target model. Therefore, we introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples. Specifically, the generator decouples the sparse perturbation into amplitude and position components. We carefully design a random quantization operator to optimize these two components jointly in an end-to-end way. The experiment shows that our method has improved the transferability by a large margin under a similar sparsity setting compared with state-of-the-art methods. Moreover, our method achieves superior inference speed, 700$\times$ faster than other optimization-based methods. The code is available at https://github.com/shaguopohuaizhe/TSAA.
翻译:深神经网络显示了它们易受对抗性攻击的脆弱性。 在本文中, 我们关注基于 $\ ell_ 0$ 规范约束的零星对抗性攻击, 只有修改图像中的几像素才能成功。 尽管攻击成功率很高, 先前的稀少攻击方法在黑盒协议下实现了低可转移性, 因为过度适应目标模式。 因此, 我们引入了一个发电机结构来缓解过度适应问题, 从而高效地将稀疏的对抗性攻击性例子转移出去。 具体地说, 发电机将稀疏的扰性攻击分解为振荡和位置组件。 我们仔细设计了一个随机的量化操作器, 以最终方式将这两个部件联合优化。 实验显示, 我们的方法在与最新技术方法相比相似的宽度环境下提高了很大的可转移性。 此外, 我们的方法比其他最优化方法更快的推推力速度为700美元。 代码可在 https://github.com/shaguopohuizhe/ TSAA 上查阅。