Scaling quantum computing beyond a single device requires networking many quantum processing units (QPUs) into a coherent quantum-HPC system. We propose the Modular Entanglement Hub (ModEn-Hub) architecture: a hub-and-spoke photonic interconnect paired with a real-time quantum network orchestrator. ModEn-Hub centralizes entanglement sources and shared quantum memory to deliver on-demand, high-fidelity Bell pairs across heterogeneous QPUs, while the control plane schedules teleportation-based non-local gates, launches parallel entanglement attempts, and maintains a small ebit cache. To quantify benefits, we implement a lightweight, reproducible Monte Carlo study under realistic loss and tight round budgets, comparing a naive sequential baseline to an orchestrated policy with logarithmically scaled parallelism and opportunistic caching. Across 1-128 QPUs and 2,500 trials per point, ModEn-Hub-style orchestration sustains about 90% teleportation success while the baseline degrades toward about 30%, at the cost of higher average entanglement attempts (about 10-12 versus about 3). These results provide clear, high-level evidence that adaptive resource orchestration in the ModEn-Hub enables scalable and efficient quantum-HPC operation on near-term hardware.
翻译:将量子计算扩展到单个设备之外,需要将多个量子处理单元(QPU)联网成一个连贯的量子-高性能计算(HPC)系统。我们提出了模块化纠缠枢纽(ModEn-Hub)架构:一种集线-辐条式光子互连与实时量子网络编排器相结合的方案。ModEn-Hub集中了纠缠源和共享量子存储器,以在异构QPU之间提供按需、高保真度的贝尔对,同时控制平面调度基于隐形传态的非局域门操作,发起并行纠缠尝试,并维护一个小的纠缠比特缓存。为了量化其优势,我们在现实的损耗和严格的往返预算下,实施了一项轻量级、可复现的蒙特卡洛研究,将一种朴素的顺序基线策略与一种具有对数级缩放并行性和机会性缓存的编排策略进行了比较。在1到128个QPU以及每个数据点2500次试验的范围内,ModEn-Hub式编排维持了约90%的隐形传态成功率,而基线策略则下降至约30%,代价是更高的平均纠缠尝试次数(约10-12次对约3次)。这些结果提供了清晰的高层次证据,表明ModEn-Hub中的自适应资源编排能够在近期硬件上实现可扩展且高效的量子-HPC操作。