This paper proposes a personalized federated learning framework integrating heat-kernel enhanced tensorized multi-view fuzzy c-means clustering with tensor decomposition techniques. The approach combines heat-kernel coefficients adapted from quantum field theory with PARAFAC2 and Tucker decomposition to transform distance metrics and efficiently represent high-dimensional multi-view structures. Two main algorithms, FedHK-PARAFAC2 and FedHK-Tucker, are developed to extract shared and view-specific features while preserving inter-view relationships. The framework addresses data heterogeneity, privacy preservation, and communication efficiency challenges in federated learning environments. Theoretical analysis provides convergence guarantees, privacy bounds, and complexity analysis. The integration of heat-kernel methods with tensor decomposition in a federated setting offers a novel approach for effective multi-view data analysis while ensuring data privacy.
翻译:本文提出了一种个性化联邦学习框架,该框架将热核增强的张量化多视图模糊c均值聚类与张量分解技术相结合。该方法结合了从量子场论中引入的热核系数与PARAFAC2和Tucker分解,以转换距离度量并高效表示高维多视图结构。我们开发了两种主要算法——FedHK-PARAFAC2和FedHK-Tucker,用于在保持视图间关系的同时提取共享特征和视图特定特征。该框架解决了联邦学习环境中数据异构性、隐私保护和通信效率的挑战。理论分析提供了收敛性保证、隐私边界和复杂度分析。在联邦学习环境中将热核方法与张量分解相结合,为在确保数据隐私的同时进行有效的多视图数据分析提供了一种新颖的途径。