Hyperbolic curvature flow is a geometric evolution equation that in the plane can be viewed as the natural hyperbolic analogue of curve shortening flow. It was proposed by Gurtin and Podio-Guidugli (1991) to model certain wave phenomena in solid-liquid interfaces. We introduce a semidiscrete finite difference method for the approximation of hyperbolic curvature flow and prove error bounds for natural discrete norms. We also present numerical simulations, including the onset of singularities starting from smooth strictly convex initial data.
翻译:超曲曲线流是一个几何进化方程, 在平面上可以被视为曲线缩短流的自然双曲类比。 Gurtin 和 Podio- Guidugli (1991年) 提议在固体液态界面中模拟某些波现象。 我们为超曲曲流的近似引入了半分数有限差异法, 并证明自然离散规范的误差界限。 我们还提出了数字模拟, 包括从纯顺的纯二次曲线初始数据开始的奇特性开始。