A rooted tree $T$ with vertex labels $t(v)$ and set-valued edge labels $\lambda(e)$ defines maps $\delta$ and $\varepsilon$ on the pairs of leaves of $T$ by setting $\delta(x,y)=q$ if the last common ancestor $\text{lca}(x,y)$ of $x$ and $y$ is labeled $q$, and $m\in \varepsilon(x,y)$ if $m\in\lambda(e)$ for at least one edge $e$ along the path from $\text{lca}(x,y)$ to $y$. We show that a pair of maps $(\delta,\varepsilon)$ derives from a tree $(T,t,\lambda)$ if and only if there exists a common refinement of the (unique) least-resolved vertex labeled tree $(T_{\delta},t_{\delta})$ that explains $\delta$ and the (unique) least resolved edge labeled tree $(T_{\varepsilon},\lambda_{\varepsilon})$ that explains $\varepsilon$ (provided both trees exist). This result remains true if certain combinations of labels at incident vertices and edges are forbidden.
翻译:根树$T$,加上顶端标签为$tt(v)$和定值边缘标签为$lumbda(e)美元,用美元定义地图$delta$和美元瓦列普西隆$,用美元设置$delta(x,y)=q美元,如果上一个共同的祖先$text{lca}(x,y)美元和美元标注为$q美元,用美元,用美元标注为$,用美元标注为$t(x,y),用美元标注为$(varepsion),用美元标注为$(x,y),用美元(e),用美元标注为$(m),用美元(m),用美元标注为$(x,y),用美元标注为$(xxx),只有(nique)最低溶解的脊椎标签(xxxdelta),用美元标注为美元。