Using more reference frames can significantly improve the compression efficiency in neural video compression. However, in low-latency scenarios, most existing neural video compression frameworks usually use the previous one frame as reference. Or a few frameworks which use the previous multiple frames as reference only adopt a simple multi-reference frames propagation mechanism. In this paper, we present a more reasonable multi-reference frames propagation mechanism for neural video compression, called butterfly multi-reference frame propagation mechanism (Butterfly), which allows a more effective feature fusion of multi-reference frames. By this, we can generate more accurate temporal context conditional prior for Contextual Coding Module. Besides, when the number of decoded frames does not meet the required number of reference frames, we duplicate the nearest reference frame to achieve the requirement, which is better than duplicating the furthest one. Experiment results show that our method can significantly outperform the previous state-of-the-art (SOTA), and our neural codec can achieve -7.6% bitrate save on HEVC Class D dataset when compares with our base single-reference frame model with the same compression configuration.


翻译:使用更多的参考框架可以显著提高神经视频压缩的压缩效率。 但是,在低纬度情景中,大多数现有神经视频压缩框架通常使用前一个框架作为参考。 或者使用前多个框架作为参考的几个框架只采用简单的多参照框架传播机制。 在本文中,我们提出了一个更合理的神经视频压缩多参照框架传播机制(称为蝴蝶多参照框架传播机制(Butly)),这可以使多参照框架的特性更有效地融合。 这样,我们就可以产生更准确的时间背景,在上下文编码模块之前设定条件。 此外,当解码框架的数量不能满足所需的参考框架数量时,我们重复了最接近的参考框架,以达到这一要求,这比最远的放大框架更好。 实验结果显示,我们的方法可以大大超越以前的状态(SOTA),而我们的神经代码可以实现-7.6%的比特率,在与同一压缩配置的基本单一参照框架模型相比时,在HEVC类D数据集上可以实现-7.6%的保存率。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2023年4月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员