Deep learning has experienced significant growth in recent years, resulting in increased energy consumption and carbon emission from the use of GPUs for training deep neural networks (DNNs). Answering the call for sustainability, conventional solutions have attempted to move training jobs to locations or time frames with lower carbon intensity. However, moving jobs to other locations may not always be feasible due to large dataset sizes or data regulations. Moreover, postponing training can negatively impact application service quality because the DNNs backing the service are not updated in a timely fashion. In this work, we present a practical solution that reduces the carbon footprint of DNN training without migrating or postponing jobs. Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPUs, thereby reducing carbon footprint while maintaining training performance. Furthermore, in order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm that predicts the carbon intensity of the upcoming time frame. Our solution, Chase, reduces the total carbon footprint of training ResNet-50 on ImageNet by 13.6% while only increasing training time by 2.5%.


翻译:深度学习在近年来经历了显着增长,由此导致了使用GPU进行深度神经网络(DNN)训练的能源消耗和碳排放的增加。响应可持续性的呼吁,传统解决方案尝试将训练作业移到碳强度较低的位置或时间框架。然而,将作业移动到其他位置可能并不总是可行的,因为数据集的大小可能会很大或受到数据法规的限制。此外,推迟训练可能会对应用程序服务质量产生负面影响,因为支持服务的DNN没有及时更新。在这项工作中,我们提出了一种实用的解决方案,以减少DNN训练的碳足迹,而不需要迁移或推迟作业。具体而言,我们的解决方案在训练期间观察实时碳强度变化并控制GPU的能源消耗,从而在保持训练性能的同时减少碳足迹。此外,为了主动适应碳强度的变化,我们提出了一种轻量级机器学习算法,用于预测即将到来的时间框架的碳强度。我们的解决方案Chase将在ImageNet上训练ResNet-50的总碳足迹降低了13.6%,而仅将训练时间增加了2.5%。

0
下载
关闭预览

相关内容

碳足迹是用来衡量个体、组织、产品或国家在一定时间内直接或间接导致的二氧化碳排放量的指标。碳足迹的计算涵盖了产品或服务从生产、运输、最终使用到废弃处理的整个生命周期的排放。这种全面的评估方法使我们能更准确地了解和评价人类活动对环境的影响。碳足迹概念的推出,旨在提醒人们要意识到应对气候变化的紧迫性。通过计算和了解个人或组织的碳足迹,可以帮助人们识别和实施减少温室气体排放的策略,进而对抗全球变暖。2023年,我国陆续出台了一系列政策,加快提升国内重点产品的碳足迹管理水平,促进相关行业的绿色低碳转型,助力实现碳达峰和碳中和目标。随着对气候变化影响的深入理解,以及碳捕集、利用与封存技术的不断进步,人类正在采取更多的减排和碳中和措施。这些措施正深刻地影响我们的生活、工作方式,或将重塑整个社会经济结构。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年5月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员