We consider a standard federated learning architecture where a group of clients periodically coordinate with a central server to train a statistical model. We tackle two major challenges in federated learning: (i) objective heterogeneity, which stems from differences in the clients' local loss functions, and (ii) systems heterogeneity, which leads to slow and straggling client devices. Due to such client heterogeneity, we show that existing federated learning algorithms suffer from a fundamental speed-accuracy conflict: they either guarantee linear convergence but to an incorrect point, or convergence to the global minimum but at a sub-linear rate, i.e., fast convergence comes at the expense of accuracy. To address the above limitation, we propose FedLin - a simple, new algorithm that exploits past gradients and employs client-specific learning rates. When the clients' local loss functions are smooth and strongly convex, we show that FedLin guarantees linear convergence to the global minimum. We then establish matching upper and lower bounds on the convergence rate of FedLin that highlight the trade-offs associated with infrequent, periodic communication. Notably, FedLin is the only approach that is able to match centralized convergence rates (up to constants) for smooth strongly convex, convex, and non-convex loss functions despite arbitrary objective and systems heterogeneity. We further show that FedLin preserves linear convergence rates under aggressive gradient sparsification, and quantify the effect of the compression level on the convergence rate.


翻译:我们考虑的是标准的联邦学习架构,在这个架构中,一组客户定期与中央服务器协调,以培训统计模式。我们应对了在联邦学习方面的两大挑战:(一) 目标异质性,因客户当地损失功能的差异而产生,以及(二) 系统异质性,导致客户设备缓慢和支离破碎。由于客户差异性,我们显示,现有的联邦学习算法存在基本的速度不精确冲突:它们要么保证线性趋同,但达到一个不正确的点,要么与全球最低水平趋同,但以亚线性比率为次线性,即快速趋同以牺牲准确性为代价。为了应对上述限制,我们建议FedLin-一种利用过去梯度和客户特定学习率的简单、新的算法。由于客户损失函数平滑和强烈的曲线,我们显示,FedLin的计算法保证了我们全球最低程度的线性趋同。我们随后将FedLin的趋同率与经常、定期和直线性趋同性比率相匹配,尽管他能够与经常、定期的货币趋同的联式的货币递合。

0
下载
关闭预览

相关内容

首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员