Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This perspective enables us to reason about the effects of changes to this process (interventions) and what would have happened in hindsight (counterfactuals). We categorize work in CausalML into five groups according to the problems they address: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, and (5) causal reinforcement learning. We systematically compare the methods in each category and point out open problems. Further, we review data-modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.


翻译:Causal Machinening(Causal Machinening)是机械学习方法的总括术语,将数据生成过程正规化为结构性因果模型(SCM),这一视角使我们得以了解该过程变化(干预)的影响以及事后观察(对抗事实)中会发生的情况。我们将CausalML的工作按照它们处理的问题分为五组:(1)因果监督学习,(2)因果分类模型,(3)因果解释,(4)因果公正,(5)因果强化学习。我们系统地比较每一类方法,指出未解决的问题。此外,我们审查了计算机视觉、自然语言处理和图表表述学习中的数据-模式特定应用。最后,我们概述了因果基准和对这一新生领域状况的批判性讨论,包括未来工作的建议。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
45+阅读 · 2022年9月19日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
151+阅读 · 2017年8月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员