Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
翻译:自动编码器被广泛用于机器学习应用, 特别是异常点检测。 因此, 它们被引入高能物理, 成为建模独立的新物理搜索的有希望的工具。 我们仔细检查自动编码器的使用情况, 以便根据重建损失进行不受监督的异常点检测, 以显示其能力, 但也检查其局限性。 作为粒子物理基准方案, 我们研究在QCD喷气机图像背景下对顶部喷气机图像进行标记的问题。 虽然我们复制了文献的正面结果, 但是我们显示标准自动编码器设置不能被看作一个依赖模型的异常点, 通过颠倒任务: 由于喷气图像的广度和具体结构, 自动编码器无法在顶部喷气机上进行不受监督的检测, 以显示其能力。 由于相同的自动编码器结构可以成为一个良好的调试器, 一种特殊的反常态, 我们建议改进性能衡量模型依赖性异常点检测任务的方法。 我们还改进了自动编码器的能力, 这样的自动编码器能够学习高压的标签。