Reducing the requirement for densely annotated masks in medical image segmentation is important due to cost constraints. In this paper, we consider the problem of inferring pixel-level predictions of brain lesions by only using image-level labels for training. By leveraging recent advances in generative diffusion probabilistic models (DPM), we synthesize counterfactuals of "How would a patient appear if X pathology was not present?". The difference image between the observed patient state and the healthy counterfactual can be used for inferring the location of pathology. We generate counterfactuals that correspond to the minimal change of the input such that it is transformed to healthy domain. This requires training with healthy and unhealthy data in DPMs. We improve on previous counterfactual DPMs by manipulating the generation process with implicit guidance along with attention conditioning instead of using classifiers. Code is available at https://github.com/vios-s/Diff-SCM.
翻译:由于成本限制,在医疗图像分割中减少高注解面罩的要求很重要。在本文中,我们只通过使用图像等级的标签进行培训,来考虑推断脑损伤的像素水平预测问题。我们利用基因放大扩散概率模型(DPM)的最新进展,综合了“如果X病理学没有出现,病人会如何出现?”等反事实。观察到的病人状况和健康反事实之间的不同形象可以用来推断病理学的位置。我们产生的反事实与投入的最小变化相对应,从而将其转化为健康领域。这需要用健康和不健康的数据在DPM中进行培训。我们通过利用隐含的指导和注意力调节而不是使用分类器来改进先前的反实际DPMs。代码可在https://github.com/vios-s/Diff-SCM查阅。