Large-scale open-domain dialogue systems such as PLATO-2 have achieved state-of-the-art scores in both English and Chinese. However, little work explores whether such dialogue systems also work well in the Japanese language. In this work, we create a large-scale Japanese dialogue dataset, Dialogue-Graph, which contains 1.656 million dialogue data in a tree structure from News, TV subtitles, and Wikipedia corpus. Then, we train PLATO-2 using Dialogue-Graph to build a large-scale Japanese dialogue system, PLATO-JDS. In addition, to improve the PLATO-JDS in the topic switch issue, we introduce a topic-switch algorithm composed of a topic discriminator to switch to a new topic when user input differs from the previous topic. We evaluate the user experience by using our model with respect to four metrics, namely, coherence, informativeness, engagingness, and humanness. As a result, our proposed PLATO-JDS achieves an average score of 1.500 for the human evaluation with human-bot chat strategy, which is close to the maximum score of 2.000 and suggests the high-quality dialogue generation capability of PLATO-2 in Japanese. Furthermore, our proposed topic-switch algorithm achieves an average score of 1.767 and outperforms PLATO-JDS by 0.267, indicating its effectiveness in improving the user experience of our system.
翻译:PLATO-2等大型开放域对话系统在英语和中文中都达到了最先进的分数,然而,几乎没有什么工作来探讨这种对话系统在日文中是否也效果良好。在这项工作中,我们创建了一个大型的日本对话数据集,即“对话格-格-格-”系统,其中包括来自新闻、电视字幕和维基百科的16.56亿个对话数据。然后,我们用“对话格-2”系统培训PLATO-2,以建立一个大规模的日本对话系统,即PLATO-JDS。此外,为了改进主题交换问题中的PLATO-JDS,我们引入了由主题区分器组成的主题交换算法,以便在用户投入不同于前一个主题时转换为一个新的主题。我们通过使用我们关于四个尺度的模型,即一致性、信息性、参与性和人性化。结果,我们提议的PLATOO-JDS在与人文交流战略之间的平均分数为1.500分,这接近于2.000分的顶分数,我们提出的PLA-DA-S-S-Sqalg-S-Squaldaldaldal-dalgaldow 的分数,我们提议的P-dal-dal-dorg-daldaldorgmentaldorgmentaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald 的算出了我们P-一个在P-dorgaldgaldaldgaldaldgaldgaldgy 的平进进进进进进进进进进的平的系统,我们P-S。