This paper presents a fault-tolerant 3D vision system for autonomous robotic operation. In particular, pose estimation of space objects is achieved using 3D vision data in an integrated Kalman filter (KF) and an Iterative Closest Point (ICP) algorithm in a closed-loop configuration. The initial guess for the internal ICP iteration is provided by the state estimate propagation of the Kalman filer. The Kalman filter is capable of not only estimating the target's states but also its inertial parameters. This allows the motion of the target to be predictable as soon as the filter converges. Consequently, the ICP can maintain pose tracking over a wider range of velocity due to the increased precision of ICP initialization. Furthermore, incorporation of the target's dynamics model in the estimation process allows the estimator continuously provide pose estimation even when the sensor temporally loses its signal namely due to obstruction. The capabilities of the pose estimation methodology is demonstrated by a ground testbed for Automated Rendezvous & Docking. In this experiment, Neptec's Laser Camera System (LCS) is used for real-time scanning of a satellite model attached to a manipulator arm, which is driven by a simulator according to orbital and attitude dynamics. The results showed that robust tracking of the free-floating tumbling satellite can be achieved only if the Kalman filter and ICP are in a closed-loop configuration.


翻译:本文为自动机器人操作提供了一个不容错的 3D 视觉系统 。 特别是, 使用 3D 视觉数据在综合 Kalman 过滤器( KF) 综合 Kalman 过滤器( KF) 中用 3D 视觉数据进行空间物体估计, 在闭环配置中使用循环点( IP) 算法 。 此文件为内部比较方案的迭代提供了初步猜测, 由 Kalman 档案员的国家估计传播提供 。 Kalman 过滤器不仅能够估计目标状态, 而且还能够评估其惯性参数 。 这样可以让目标运动在过滤器聚集时立即具有可预测性。 因此, 比较方案可以保持对范围更广的速度进行跟踪, 因为比较方案的初始化更加精确。 此外, 将目标的动态模型纳入估算器可以持续提供估计, 即使传感器暂时失去其信号, 也是由于阻力的。 表面估计方法的能力通过自动再调和 Docking 的地面测试台式测试台, Neptec Laster 相机系统(LCS) 能够对范围进行更宽的速度进行更宽的轨道定位扫描,, 如果由驱动的轨道定位模型显示, 驱动的轨道定位模型可以实现, 驱动的轨道上自动的轨道定位,, 将显示, 方向的轨道定位模型将显示, 将显示, 动动动动动动动动动动动动动动动动动动后机能动的模型将进行实时扫描动后 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员