It is well known that bridge regression enjoys superior theoretical properties than traditional LASSO. However, the current latent variable representation of its Bayesian counterpart, based on the exponential power prior, is computationally expensive in higher dimensions. In this paper, we show that the exponential power prior has a closed-form scale mixture of normal decomposition for $\alpha=(\frac{1}{2})^\gamma, \gamma \in \mathbb{N}^+$. We develop a partially collapsed Gibbs sampling scheme, which outperforms existing Markov chain Monte Carlo strategies, we also study theoretical properties under this prior when $p>n$. In addition, we introduce a non-separable bridge penalty function inspired by the fully Bayesian formulation and a novel, efficient, coordinate-descent algorithm. We prove the algorithm's convergence and show that the local minimizer from our optimization algorithm has an oracle property. Finally, simulation studies were carried out to illustrate the performance of the new algorithms.
翻译:众所周知,桥梁回归具有优于传统的LASSO的理论特性。 然而,基于前指数功率的Bayesian对应方当前潜伏变量的表达方式,在更高维度上计算得非常昂贵。 在本文中,我们显示,前指数功率具有一种封闭式比例式的正常分解混合物,其中通常分解为$alpha=(\frac{1 ⁇ 2}} ⁇ gamma,\gamma\ in\mathbb{N ⁇ $。我们开发了一个部分崩溃的Gibbs取样方案,它比现有的Markov链Monte Carlo战略要好得多,我们也在此之前用美元来研究理论属性。 此外,我们引入了一种由全巴伊斯配方和新颖、高效、协调-白日算法所启发的不可分离的桥梁惩罚功能。 我们证明了算法的趋同,并表明我们优化算法的当地最小化器有孔径特性。 最后,我们进行了模拟研究,以说明新算法的性能。