Influence maximization has found applications in a wide range of real-world problems, for instance, viral marketing of products in an online social network, and information propagation of valuable information such as job vacancy advertisements and health-related information. While existing algorithmic techniques usually aim at maximizing the total number of people influenced, the population often comprises several socially salient groups, e.g., based on gender or race. As a result, these techniques could lead to disparity across different groups in receiving important information. Furthermore, in many of these applications, the spread of influence is time-critical, i.e., it is only beneficial to be influenced before a time deadline. As we show in this paper, the time-criticality of the information could further exacerbate the disparity of influence across groups. This disparity, introduced by algorithms aimed at maximizing total influence, could have far-reaching consequences, impacting people's prosperity and putting minority groups at a big disadvantage. In this work, we propose a notion of group fairness in time-critical influence maximization. We introduce surrogate objective functions to solve the influence maximization problem under fairness considerations. By exploiting the submodularity structure of our objectives, we provide computationally efficient algorithms with guarantees that are effective in enforcing fairness during the propagation process. We demonstrate the effectiveness of our approach through synthetic and real-world experiments.


翻译:影响最大化在一系列广泛的现实世界问题中得到了应用,例如网上社会网络产品的病毒营销,以及职业空缺广告和健康信息等宝贵信息的信息传播。虽然现有的算法技术通常旨在最大限度地增加受影响的总人数,但人口往往包括几个社会显著群体,例如基于性别或种族的。因此,这些技术可能导致不同群体在获得重要信息方面的差异。此外,在许多这些应用中,影响力的传播是时间紧迫的,也就是说,在最后期限之前才受到影响是有益的。正如我们在本文件中所表明的那样,信息的时间紧迫性可能进一步加剧不同群体之间影响的差距。这种差异是由旨在最大限度地扩大全面影响力的算法所引入的,可能产生深远的后果,影响人们的繁荣,使少数群体处于非常不利的地位。在这项工作中,我们提出了在时间紧迫的影响最大化方面群体公平性的概念。我们引入了一种超乎现实的客观功能,在时间期限之前才能受到影响最大程度的考虑。我们通过利用亚质化方法来进一步加大不同群体之间影响。我们的目标的精确度的演化,我们通过在合成世界目标中以有效的方式进行我们的有效演化的演算。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
6+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
6+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员