Machine Learning (ML) projects incur novel challenges in their development and productionisation over traditional software applications, though established principles and best practices in ensuring the project's software quality still apply. While using static analysis to catch code smells has been shown to improve software quality attributes, it is only a small piece of the software quality puzzle, especially in the case of ML projects given their additional challenges and lower degree of Software Engineering (SE) experience in the data scientists that develop them. We introduce the novel concept of project smells which consider deficits in project management as a more holistic perspective on software quality in ML projects. An open-source static analysis tool mllint was also implemented to help detect and mitigate these. Our research evaluates this novel concept of project smells in the industrial context of ING, a global bank and large software- and data-intensive organisation. We also investigate the perceived importance of these project smells for proof-of-concept versus production-ready ML projects, as well as the perceived obstructions and benefits to using static analysis tools such as mllint. Our findings indicate a need for context-aware static analysis tools, that fit the needs of the project at its current stage of development, while requiring minimal configuration effort from the user.


翻译:机械学习(ML)项目在传统软件应用的开发和生产方面带来了新的挑战,尽管确保项目软件质量的既定原则和最佳做法仍然适用。虽然使用静态分析来捕捉代码气味,已经显示改进软件质量属性,但这只是软件质量难题中的一小部分,特别是考虑到ML项目面临的额外挑战以及开发数据科学家的软件工程经验较低,因此,对于ML项目而言,这仅仅是软件质量难题中的一小部分。我们引入了新颖的项目气味概念,认为项目管理缺陷是ML项目软件质量的更全面视角。还实施了开放源静态分析工具模子,以帮助检测和缓解这些缺陷。我们的研究评估了该项目在工业环境中的这个新概念,即全球银行以及大型软件和数据密集型组织。我们还调查了这些项目被认为对于验证概念和生产成熟的ML项目的重要性,以及使用静态分析工具如Mllint被认为存在的障碍和好处。我们的调查结果表明,需要从目前阶段的用户的配置中找到符合项目需要的环境意识静态分析工具。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
19+阅读 · 2021年6月15日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员