During a geosteering operation the well path is intentionally adjusted in response to the new data acquired while drilling. To achieve consistent high-quality decisions, especially when drilling in complex environments, decision support systems can help cope with high volumes of data and interpretation complexities. They can assimilate the real-time measurements into a probabilistic earth model and use the updated model for decision recommendations. Recently, machine learning (ML) techniques have enabled a wide range of methods that redistribute computational cost from on-line to off-line calculations. In this paper, we introduce two ML techniques into the geosteering decision support framework. Firstly, a complex earth model representation is generated using a Generative Adversarial Network (GAN). Secondly, a commercial extra-deep electromagnetic simulator is represented using a Forward Deep Neural Network (FDNN). The numerical experiments demonstrate that the combination of the GAN and the FDNN in an ensemble randomized maximum likelihood data assimilation scheme provides real-time estimates of complex geological uncertainty. This yields reduction of geological uncertainty ahead of the drill-bit from the measurements gathered behind and around the well bore.
翻译:钻探作业期间,根据钻探过程中获得的新数据,有意调整井道。为了实现一致的高质量决定,特别是在复杂环境中钻探时,决策支持系统可以帮助应对大量数据和解释的复杂性。它们可以将实时测量纳入概率地球模型,并使用最新的决策建议模型。最近,机器学习(ML)技术使一系列广泛的方法得以将计算成本从在线向离线计算进行重新分配。在本文中,我们向地理定位决策支持框架引入了两种 ML技术。首先,利用基因自动网络(GAN)生成了一个复杂的地球模型代表。第二,利用远深神经网络(FDNN)代表了一个商业超深电磁模拟器。数字实验表明,GAN和DNNN的组合是一个混合的随机最大可能性数据同化计划,提供了复杂的地质不确定性的实时估计。这在钻探后和井周围的测量数据中,在钻探点之前就会产生地质不确定性的减少。