Robot navigation in a safe way for complex and crowded situations is studied in this work. When facing complex environments with both static and dynamic obstacles, in existing works unicycle nonholonomic robots are prone to two extreme behaviors, one is to fall into dead ends formed by obstacles, and the other is to not complete the navigation task in time due to excessive collision avoidance.As a result, we propose the R-SARL framework, which is based on a deep reinforcement learning algorithm and where we augment the reward function to avoid collisions. In particular, we estimate unsafe interactions between the robot and obstacles in a look-ahead distance and penalize accordingly, so that the robot can avoid collisions in advance and reach its destination safely.Furthermore, we penalize frequent excessive detours to reduce the timeout and thus improve the efficiency of navigation.We test our method in various challenging and complex crowd navigation tasks. The results show that our method improves navigation performance and outperforms state-of-the-art methods.
翻译:在这项工作中,将研究以安全的方式为复杂和拥挤的环境进行机器人导航。当面临具有静态和动态障碍的复杂环境时,在现有的工程中,单循环非蛋白学机器人容易发生两种极端行为,其中一种是陷入障碍形成的死胡同,而另一种是因过度避免碰撞而不能及时完成导航任务。结果,我们提出R-SARL框架,该框架以深层强化学习算法为基础,并用来增加奖励功能以避免碰撞。特别是,我们估计机器人之间不安全的相互作用和视距障碍,并据此进行惩罚,以使机器人能够避免提前碰撞并安全到达目的地。此外,我们惩罚频繁的过度绕行,以减少超时速,从而提高航行效率。我们测试各种具有挑战性和复杂性的人群导航任务的方法。结果显示,我们的方法改进了导航性能,超越了最先进的方法。