Robot navigation in a safe way for complex and crowded situations is studied in this work. When facing complex environments with both static and dynamic obstacles, in existing works unicycle nonholonomic robots are prone to two extreme behaviors, one is to fall into dead ends formed by obstacles, and the other is to not complete the navigation task in time due to excessive collision avoidance.As a result, we propose the R-SARL framework, which is based on a deep reinforcement learning algorithm and where we augment the reward function to avoid collisions. In particular, we estimate unsafe interactions between the robot and obstacles in a look-ahead distance and penalize accordingly, so that the robot can avoid collisions in advance and reach its destination safely.Furthermore, we penalize frequent excessive detours to reduce the timeout and thus improve the efficiency of navigation.We test our method in various challenging and complex crowd navigation tasks. The results show that our method improves navigation performance and outperforms state-of-the-art methods.


翻译:在这项工作中,将研究以安全的方式为复杂和拥挤的环境进行机器人导航。当面临具有静态和动态障碍的复杂环境时,在现有的工程中,单循环非蛋白学机器人容易发生两种极端行为,其中一种是陷入障碍形成的死胡同,而另一种是因过度避免碰撞而不能及时完成导航任务。结果,我们提出R-SARL框架,该框架以深层强化学习算法为基础,并用来增加奖励功能以避免碰撞。特别是,我们估计机器人之间不安全的相互作用和视距障碍,并据此进行惩罚,以使机器人能够避免提前碰撞并安全到达目的地。此外,我们惩罚频繁的过度绕行,以减少超时速,从而提高航行效率。我们测试各种具有挑战性和复杂性的人群导航任务的方法。结果显示,我们的方法改进了导航性能,超越了最先进的方法。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员