Generative Adversarial Network (GAN) is widely adopted in numerous application areas, such as data preprocessing, image editing, and creativity support. However, GAN's 'black box' nature prevents non-expert users from controlling what data a model generates, spawning a plethora of prior work that focused on algorithm-driven approaches to extract editing directions to control GAN. Complementarily, we propose a GANzilla: a user-driven tool that empowers a user with the classic scatter/gather technique to iteratively discover directions to meet their editing goals. In a study with 12 participants, GANzilla users were able to discover directions that (i) edited images to match provided examples (closed-ended tasks) and that (ii) met a high-level goal, e.g., making the face happier, while showing diversity across individuals (open-ended tasks).
翻译:GAN的“黑盒”性质阻止非专家用户控制模型生成的数据,导致大量先前的工作侧重于以算法驱动的方法提取控制GAN的编辑方向。我们提议采用一个GANzilla:一个用户驱动的工具,使拥有传统的散射/聚合技术的用户能够反复发现方向,以实现编辑目标。在一项有12名参与者参与的研究中,GANzilla用户能够发现以下方向:(一) 编辑图像,以匹配提供的例子(已完成的任务)和(二) 达到一个高层次的目标,例如,使面部更快乐,同时展示个人的多样性(开放式的任务)。