Summarizing video content is important for video streaming services to engage the user in a limited time span. To this end, current methods involve manual curation or using passive interest cues to annotate potential high-interest segments to form the basis of summarized videos, and are costly and unreliable. We propose a viewership-driven, automated method that accommodates a range of segment identification goals. Using satellite television viewership data as a source of ground truth for viewer interest, we apply statistical anomaly detection on a timeline of viewership metrics to identify 'seed' segments of high viewer interest. These segments are post-processed using empirical rules and several sources of content metadata, e.g. shot boundaries, adding in personalization aspects to produce the final highlights video. To demonstrate the flexibility of our approach, we present two case studies, on the United States Democratic Presidential Debate on 19th December 2019, and Wimbledon Women's Final 2019. We perform qualitative comparisons with their publicly available highlights, as well as early vs. late viewership comparisons for insights into possible media and social influence on viewing behavior.
翻译:视频内容总结对于视频流服务在有限的时间内与用户接触非常重要。 为此,目前的方法包括人工整理或使用被动兴趣提示,说明潜在的高兴趣部分,形成摘要视频的基础,费用高且不可靠。我们提议一种由观众驱动的自动化方法,其中考虑到一系列分段识别目标。我们利用卫星电视浏览器数据作为地面真相的来源,让观众感兴趣,在浏览指标的时限内进行统计异常现象检测,以确定观众感兴趣的“种子”部分。这些部分采用经验规则和若干内容元数据来源进行后处理,例如,拍摄边界,在个人化方面增加制作最后重点视频。为了展示我们的方法的灵活性,我们介绍了关于2019年12月19日美国总统辩论和Wimbledon妇女最后2019年案例的两个案例研究。我们用公开的亮点进行定性比较,以及早期和晚期浏览器比较,以深入了解可能的媒体和社会对观察行为的影响。