In this research, an integrated detection model, Swin-transformer-YOLOv5 or Swin-T-YOLOv5, was proposed for real-time wine grape bunch detection to inherit the advantages from both YOLOv5 and Swin-transformer. The research was conducted on two different grape varieties of Chardonnay (always white berry skin) and Merlot (white or white-red mix berry skin when immature; red when matured) from July to September in 2019. To verify the superiority of Swin-T-YOLOv5, its performance was compared against several commonly used/competitive object detectors, including Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5. All models were assessed under different test conditions, including two different weather conditions (sunny and cloudy), two different berry maturity stages (immature and mature), and three different sunlight directions/intensities (morning, noon, and afternoon) for a comprehensive comparison. Additionally, the predicted number of grape bunches by Swin-T-YOLOv5 was further compared with ground truth values, including both in-field manual counting and manual labeling during the annotation process. Results showed that the proposed Swin-T-YOLOv5 outperformed all other studied models for grape bunch detection, with up to 97% of mean Average Precision (mAP) and 0.89 of F1-score when the weather was cloudy. This mAP was approximately 44%, 18%, 14%, and 4% greater than Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5, respectively. Swin-T-YOLOv5 achieved its lowest mAP (90%) and F1-score (0.82) when detecting immature berries, where the mAP was approximately 40%, 5%, 3%, and 1% greater than the same. Furthermore, Swin-T-YOLOv5 performed better on Chardonnay variety with achieved up to 0.91 of R2 and 2.36 root mean square error (RMSE) when comparing the predictions with ground truth. However, it underperformed on Merlot variety with achieved only up to 0.70 of R2 and 3.30 of RMSE.


翻译:在此研究中,一个集成检测模型(Swin-transed-YOLOv5 或 Swin-T-YOLOV5 )被推荐用于实时葡萄葡萄葡萄团探测以继承YOLOv5和Swin-Transer的优势。该研究针对两种不同的葡萄品种:Chardonay(通常是白莓皮肤)和Merlot(白色或白色混合的果色皮肤,在2019年7月至9月期间成熟时是红色的)。为了验证Swin-T-YOLOv5 的优越性,其性能与一些常用的/竞争性物体探测器进行了比较,包括快速R-CNN、YOLV3、YOLOv4 和O5。在两种不同的测试条件下对所有模型进行了评估,包括两种不同的天气条件(湿润和云色)、两个不同的成熟阶段(成熟和成熟),以及三个不同的阳光方向/强度(在20世纪,正午和下午),用来进行全面比较。此外,Swin-T-YOL的葡萄团直径解(大约为S-OL OVO5,在S-RO5 手动过程中,这段,这段的预计结果和手动结果都显示,这段。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员