Accurate segmentation of organelle instances, e.g., mitochondria, is essential for electron microscopy analysis. Despite the outstanding performance of fully supervised methods, they highly rely on sufficient per-pixel annotated data and are sensitive to domain shift. Aiming to develop a highly annotation-efficient approach with competitive performance, we focus on weakly-supervised domain adaptation (WDA) with a type of extremely sparse and weak annotation demanding minimal annotation efforts, i.e., sparse point annotations on only a small subset of object instances. To reduce performance degradation arising from domain shift, we explore multi-level transferable knowledge through conducting three complementary tasks, i.e., counting, detection, and segmentation, constituting a task pyramid with different levels of domain invariance. The intuition behind this is that after investigating a related source domain, it is much easier to spot similar objects in the target domain than to delineate their fine boundaries. Specifically, we enforce counting estimation as a global constraint to the detection with sparse supervision, which further guides the segmentation. A cross-position cut-and-paste augmentation is introduced to further compensate for the annotation sparsity. Extensive validations show that our model with only 15\% point annotations can achieve comparable performance as supervised models and shows robustness to annotation selection.
翻译:有机体的精确分解,例如,mitochondria,对于电子显微镜分析至关重要。尽管完全监督的方法表现出色,但是它们高度依赖足够的全像附加说明数据,并且对域变换十分敏感。为了发展一种高度注解高效的方法,具有竞争性的性能,我们侧重于一种极为稀少和弱小的域适应(WDA),其类型极为稀少和弱小的注释需要最小的注解努力,即仅仅对一小部分物体的微小部分进行微小的说明。为了减少域变换造成的性能退化,我们通过开展三项互补任务,即计数、检测和分解,探索多层次的可转移性知识,这三项任务都是由不同的领域变化构成的任务金字塔。我们的直觉是,在调查一个相关的源域之后,比划定其细微的界限更容易发现类似的对象。具体地说,我们把估计算为一种全球限制因素,而很少的监督又进一步指导分解。为了进一步指导分解,我们通过跨位置的分解和分解模型来探索多层次的可转让性知识,我们探索性可转让性地探索性研究,只有一种可测量性模型才能进行进一步的验证。为了进一步地显示一种可追溯性判断性地标。