We propose PHASER, a correspondence-free global registration of sensor-centric pointclouds that is robust to noise, sparsity, and partial overlaps. Our method can seamlessly handle multimodal information and does not rely on keypoint nor descriptor preprocessing modules. By exploiting properties of Fourier analysis, PHASER operates directly on the sensor's signal, fusing the spectra of multiple channels and computing the 6-DoF transformation based on correlation. Our registration pipeline starts by finding the most likely rotation followed by computing the most likely translation. Both estimates are distributed according to a probability distribution that takes the underlying manifold into account, i.e., a Bingham and Gaussian distribution, respectively. This further allows our approach to consider the periodic-nature of rotations and naturally represent its uncertainty. We extensively compare PHASER against several well-known registration algorithms on both simulated datasets, and real-world data acquired using different sensor configurations. Our results show that PHASER can globally align pointclouds in less than 100ms with an average accuracy of 2cm and 0.5deg, is resilient against noise, and can handle partial overlap.
翻译:我们建议PHASER, 一种对噪音、聚度和部分重叠保持稳健的感应中心点球球状全球无纸注册。 我们的方法可以无缝地处理多式联运信息,而不会依赖关键点或描述器预处理模块。 通过利用 Fourier 分析的特性, PHASER 直接使用传感器信号操作, 使用多个频道的光谱并计算基于相关关系的 6- DoF 转换。 我们的注册管道开始于找到最可能的旋转, 然后计算最有可能的翻译。 两种估算都根据分别考虑到基本元体的概率分布进行分配, 即Bingham 和 Gaussian 分布。 这进一步使我们能够考虑周期性旋转特性, 并自然代表其不确定性。 我们广泛比较 PHASER 与模拟数据集上几个众所周知的注册算法以及使用不同传感器配置获得的真实世界数据。 我们的结果表明, PHASER 可以在全球范围内以不到100米的速度对点数进行校准, 其平均精度为 2cm 和 0.5deg 。