Robots deployed in the real world over extended periods of time need to reason about unexpected failures, learn to predict them, and to proactively take actions to avoid future failures. Existing approaches for competence-aware planning are either model-based, requiring explicit enumeration of known failure modes, or purely statistical, using state- and location-specific failure statistics to infer competence. We instead propose a structured model-free approach to competence-aware planning by reasoning about plan execution failures due to errors in perception, without requiring a priori enumeration of failure sources or requiring location-specific failure statistics. We introduce competence-aware path planning via introspective perception (CPIP), a Bayesian framework to iteratively learn and exploit task-level competence in novel deployment environments. CPIP factorizes the competence-aware planning problem into two components. First, perception errors are learned in a model-free and location-agnostic setting via introspective perception prior to deployment in novel environments. Second, during actual deployments, the prediction of task-level failures is learned in a context-aware setting. Experiments in a simulation show that the proposed CPIP approach outperforms the frequentist baseline in multiple mobile robot tasks, and is further validated via real robot experiments in an environment with perceptually challenging obstacles and terrain.
翻译:在现实世界中长期部署的机器人需要解释出乎意料的失败,学会预测这些失败,并主动采取行动避免未来的失败。现有的能力意识规划方法要么以模型为基础,要求明确列举已知的失败模式,要么纯粹统计,使用州和地点特有的失败统计推断能力。我们建议对能力意识规划采取结构化的无模式方法,其方法是推理由于感知错误导致的计划执行失败,不要求事先列出失败来源,也不要求提供具体地点的失败统计数字。我们通过反省感知(CPIP)引入能力觉悟路径规划(CPIP),即贝耶斯框架,以便在新的部署环境中反复学习和利用任务级别的能力。CPIP将能力认知能力规划问题分为两个部分。首先,在新环境中部署之前,通过感知感前的感知感知,在模式和地点-认知环境中,通过不先入为主的感知,在实际部署期间,在背景认知环境中,对任务层次的失败进行预测。模拟实验显示,在新的部署环境中,拟议的具有挑战性CPIP的方法方法是用多式的模型测试,在每部基地环境中进一步验证。