Low-Rank Parity-Check (LRPC) codes are a class of rank metric codes that have many applications specifically in cryptography. Recently, LRPC codes have been extended to Galois rings which are a specific case of finite rings. In this paper, we first define LRPC codes over finite commutative local rings, which are bricks of finite rings, with an efficient decoder and derive an upper bound of the failure probability together with the complexity of the decoder. We then extend the definition to arbitrary finite commutative rings and also provide a decoder in this case. We end-up by introducing an application of the corresponding LRPC codes to cryptography, together with the new corresponding mathematical problems.
翻译:低射线对等检查(LRPC)代码是一类等级指标代码,在加密中具有许多具体应用。最近,LRPC代码已扩展至Galois环,这是有限环的一个特例。在本文中,我们首先对有限通量本地环(即有限环的砖块)定义LRPC代码,这些环是有限通量环,有高效的解码器,并具有失灵概率的上限以及解码器的复杂性。然后,我们将该定义扩展至任意的有限通量环,并在此情况下提供解码器。我们最后通过将相应的LRPC代码应用于加密,加上新的相应的数学问题。