We propose an automaton model which is a combination of symbolic and register automata, i.e., we enrich symbolic automata with memory. We call such automata Symbolic Register Automata (SRA). SRA extend the expressive power of symbolic automata, by allowing Boolean formulas to be applied not only to the last element read from the input string, but to multiple elements, stored in their registers. SRA also extend register automata, by allowing arbitrary Boolean formulas, besides equality predicates. We study the closure properties of SRA under union, intersection, concatenation, Kleene closure, complement and determinization and show that SRA, contrary to symbolic automata, are not in general closed under complement and they are not determinizable. However, they are closed under these operations when a window operator, quintessential in Complex Event Recognition, is used. We show how SRA can be used in Complex Event Recognition in order to detect patterns upon streams of events, using our framework that provides declarative and compositional semantics, and that allows for a systematic treatment of such automata. We also show how the behavior of SRA, as they consume streams of events, can be given a probabilistic description with the help of prediction suffix trees. This allows us to go one step beyond Complex Event Recognition to Complex Event Forecasting, where, besides detecting complex patterns, we can also efficiently forecast their occurrence.
翻译:我们提出一个自动图示模型,该模型是象征性的和注册的自动地图的组合,即我们用记忆来丰富象征的自动地图。我们称之为“自动数据符号注册自动地图 ” (SRA)。SRA通过允许将布林公式不仅应用到从输入字符串读出的最后一个元素,而且应用到存储在登记册中的多个元素,从而扩展了“自动地图”模式。SRA还扩展了“自动地图”登记册,允许任意的布利安公式,除了平等前提之外,还允许任意的布利安公式。我们研究了联盟下SRA的关闭特性、交汇、凝固、克莱恩关闭、补充和确定性,并表明SRA与象征性的自动模型相反,不是一般封闭的,而是无法确定。然而,当使用窗口操作者,即复杂事件识别的精度,我们如何在复杂事件流中使用“事件识别”来探测模式,利用我们的框架来提供声明性和构成性结构,并允许系统化地处理其预测性动态,从而能够系统地处理“自动图案”的周期,我们也可以在其中显示“稳定”的预测。我们如何了解其尾流,我们如何了解其尾流,我们也可以进行着“稳定” 。