This paper proposes TaDaa: Ticket Assignment Deep learning Auto Advisor, which leverages the latest Transformers models and machine learning techniques quickly assign issues within an organization, like customer support, help desk and alike issue ticketing systems. The project provides functionality to 1) assign an issue to the correct group, 2) assign an issue to the best resolver, and 3) provide the most relevant previously solved tickets to resolvers. We leverage one ticketing system sample dataset, with over 3k+ groups and over 10k+ resolvers to obtain a 95.2% top 3 accuracy on group suggestions and a 79.0% top 5 accuracy on resolver suggestions. We hope this research will greatly improve average issue resolution time on customer support, help desk, and issue ticketing systems.
翻译:本文提出TaDaa: 票外派深学习自动顾问,该顾问利用最新的变换模式和机器学习技术,在一个组织内迅速分配问题,如客户支持、服务台和开票系统等,该项目提供功能:(1) 将问题分配给正确的群体,(2) 将问题交给最合适的解决者,(3) 向解决者提供以前最相关的机票。 我们利用一个票单系统抽样数据集,其中超过3k+组和超过10k+解答者,以获得集团建议最高3 % 的准确率95.2%, 解决者建议最高5 % 的准确率79.0% 。 我们希望这一研究将大大改善客户支持、服务台和开票系统的平均解决问题的时间。