项目名称: 同轴多孔FeCo基磁性纤维的可控制备与微波损耗机理研究

项目编号: No.51201022

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 谢炜

作者单位: 长沙理工大学

项目金额: 25万元

中文摘要: 军事隐身技术的需求和电磁污染的日益严重为吸波材料的研究和发展提供了机遇。利用磁性纳米材料制备GHz频段高效微波吸收剂是军用隐身材料设计的重点和难点。针对现有磁性吸收剂在宽频和强吸收方面的不足,本项目拟采用同轴静电纺丝技术,研制不同成分的微纳米同轴多孔磁性FeCo纤维,研究静电纺丝参数和纤维热处理工艺对纤维结构和性能的影响规律,分析同轴多孔结构的形成机制,建立合理的同轴多孔纤维结构模型,提出评价同轴静电纺丝和表征同轴多孔纤维异形度的新方法,建立含同轴多孔纤维结构、饱和磁化强度、电磁参数、反射率和电磁波频率在内的多参数谐振吸收模型,阐明其微波损耗机理,以实现FeCo基同轴多孔纤维的可控制备。本研究将为吸波材料的设计与制备提供可靠的理论基础与技术支持,为研制"厚度薄、质量轻、频带宽、吸收强"的吸波材料提供一种新思路,具有重要的理论意义和实用价值。

中文关键词: 吸波材料;微波吸收剂;同轴纤维;吸波性能;微波损耗机理

英文摘要: Increasing demand of military stealth technology and severe electromagnetic (EM) pollution give rise to opportunity of developing microwave absorbing materials. Preparation the efficient microwave absorbers by using the magnetic nano-material is the emphasis and difficulty of the design of microwave absorbing materials in GHz frequency. In order to obtain the magnetic microwave absorbers with wider frequency range of microwave absorbing property and higher strength, a series of FeCo fibers containing different chemical composition with coaxial and porous structure will be prepared by coaxial electrospinning. The influence of electrospinning process parameters and heat treatment conditions on the structure and property of the fibers will be investigated. By discussing the formation mechanisms of coaxial and porous structure, a reasonable structure model is expected to obtain, which will have some reference value for further study of microwave loss mechanism. Novel methods need to present for evaluation the coaxial electrospinning and characterization the profile degree of coaxial and porous fibers. A reliable resonance absorbing model is expected to explain the controllable preparation and microwave loss mechanism of coaxial-porous FeCo-based magnetic fibers, which contains the cross-section structure, saturation

英文关键词: microwave absorbing materials;microwave absorbers;coaxial fiber;microwave absorbing properties;microwave loss mechanism

成为VIP会员查看完整内容
0

相关内容

编码计算研究综述
专知会员服务
21+阅读 · 2021年10月26日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
27+阅读 · 2021年8月16日
专知会员服务
30+阅读 · 2021年6月18日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
15+阅读 · 2020年11月8日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
iMac Pro 今年一季度将卷土重来?
ZEALER订阅号
0+阅读 · 2022年1月12日
双十一购物指南 VOL.2 | 接下来最值得买的是它们
ZEALER订阅号
0+阅读 · 2021年11月4日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2020年12月10日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关主题
相关VIP内容
编码计算研究综述
专知会员服务
21+阅读 · 2021年10月26日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
27+阅读 · 2021年8月16日
专知会员服务
30+阅读 · 2021年6月18日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
15+阅读 · 2020年11月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员