Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To overcome the respective limitations, we present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image, largely enhancing the inference efficiency. Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/SDM.


翻译:生成的对抗网络(GANs)在描绘图像方面取得了巨大成功,但是在解决大面积缺失的地区方面仍然有困难。相反,像自动递减和分解扩散模型这样的迭代算法必须用大量计算资源来进行部署,才能产生体面的效果。为了克服各自的局限性,我们提出了一个新的空间扩散模型(SDM),使用一些迭代来逐步向整个图像传递信息像素,这在很大程度上提高了推论效率。此外,由于拟议的分解性能模型和空间传播计划,我们的方法实现了高质量的大孔完成。在多个基准上,我们实现了新的最先进的性能。代码可以在https://github.com/fenglinglwb/SDM上发布。

1
下载
关闭预览

相关内容

数据挖掘是从数据中发现有价值的知识的计算过程,是现代数据科学的核心。它在许多领域有着巨大的应用,包括科学、工程、医疗保健、商业和医学。这些字段中的典型数据集是大的、复杂的,而且通常是有噪声的。从这些数据集中提取知识需要使用复杂的、高性能的、有原则的分析技术和算法。这些技术反过来又需要在高性能计算基础设施上的实现,这些基础设施需要经过仔细的性能调优。强大的可视化技术和有效的用户界面对于使数据挖掘工具吸引来自不同学科的研究人员、分析师、数据科学家和应用程序开发人员以及利益相关者的可用性也至关重要。SDM确立了自己在数据挖掘领域的领先地位,并为解决这些问题的研究人员提供了一个在同行评审论坛上展示其工作的场所。SDM强调原则方法和坚实的数学基础,以其高质量和高影响力的技术论文而闻名,并提供强大的研讨会和教程程序(包括在会议注册中)。 官网地址:http://dblp.uni-trier.de/db/conf/sdm/
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月5日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员