Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To overcome the respective limitations, we present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image, largely enhancing the inference efficiency. Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/SDM.
翻译:生成的对抗网络(GANs)在描绘图像方面取得了巨大成功,但是在解决大面积缺失的地区方面仍然有困难。相反,像自动递减和分解扩散模型这样的迭代算法必须用大量计算资源来进行部署,才能产生体面的效果。为了克服各自的局限性,我们提出了一个新的空间扩散模型(SDM),使用一些迭代来逐步向整个图像传递信息像素,这在很大程度上提高了推论效率。此外,由于拟议的分解性能模型和空间传播计划,我们的方法实现了高质量的大孔完成。在多个基准上,我们实现了新的最先进的性能。代码可以在https://github.com/fenglinglwb/SDM上发布。