Accurate lung nodule segmentation is crucial for early-stage lung cancer diagnosis, as it can substantially enhance patient survival rates. Computed tomography (CT) images are widely employed for early diagnosis in lung nodule analysis. However, the heterogeneity of lung nodules, size diversity, and the complexity of the surrounding environment pose challenges for developing robust nodule segmentation methods. In this study, we propose an efficient end-to-end framework, the multi-encoder-based self-adaptive hard attention network (MESAHA-Net), for precise lung nodule segmentation in CT scans. MESAHA-Net comprises three encoding paths, an attention block, and a decoder block, facilitating the integration of three types of inputs: CT slice patches, forward and backward maximum intensity projection (MIP) images, and region of interest (ROI) masks encompassing the nodule. By employing a novel adaptive hard attention mechanism, MESAHA-Net iteratively performs slice-by-slice 2D segmentation of lung nodules, focusing on the nodule region in each slice to generate 3D volumetric segmentation of lung nodules. The proposed framework has been comprehensively evaluated on the LIDC-IDRI dataset, the largest publicly available dataset for lung nodule segmentation. The results demonstrate that our approach is highly robust for various lung nodule types, outperforming previous state-of-the-art techniques in terms of segmentation accuracy and computational complexity, rendering it suitable for real-time clinical implementation.
翻译:精确的肺结节分割对于早期肺癌诊断至关重要,因为它可以显著提高患者生存率。计算机断层扫描(CT)图像被广泛应用于肺结节分析的早期诊断。然而,肺结节的异质性、大小差异和周围环境的复杂性给开发强大的结节分割方法带来了挑战。在本研究中,我们提出了一种高效的端到端框架——基于多编码器的自适应硬关注网络(MESAHA-Net),用于精确分割CT扫描中的肺结节。MESAHA-Net由三条编码路径、一个关注块和一个解码器块组成,便于集成三种类型的输入:CT切片补丁、前向和后向的最大强度投影(MIP)图像以及包含结节的感兴趣区域(ROI)掩码。通过采用一种新颖的自适应硬关注机制,MESAHA-Net逐层进行逐层的2D分割,针对每个切片中的结节区域生成3D体积的结节分割。我们在LIDC-IDRI数据集上对所提出的框架进行了全面的评估,该数据集是肺结节分割的最大公开数据集。结果表明,我们的方法对于各种肺结节类型都非常强健,在分割准确度和计算复杂度方面都优于以前的最新技术,适合实时临床应用。