This work presents a multitask approach to the simultaneous estimation of age, country of origin, and emotion given vocal burst audio for the 2022 ICML Expressive Vocalizations Challenge ExVo-MultiTask track. The method of choice utilized a combination of spectro-temporal modulation and self-supervised features, followed by an encoder-decoder network organized in a multitask paradigm. We evaluate the complementarity between the tasks posed by examining independent task-specific and joint models, and explore the relative strengths of different feature sets. We also introduce a simple score fusion mechanism to leverage the complementarity of different feature sets for this task. We find that robust data preprocessing in conjunction with score fusion over spectro-temporal receptive field and HuBERT models achieved our best ExVo-MultiTask test score of 0.412.
翻译:这项工作为2022年ICML Exclive Voalizations Challenge ExVo-MultiTask 轨道同时估算年龄、原籍国和情绪提供了一种多任务办法,为2022年ICML ExVo-MultiTask 轨迹提供了声音爆裂的声音。选择方法使用了光谱-时温调制和自我监督功能的组合,随后是以多任务模式组织起来的编码解码器网络。我们评估了独立任务模式和联合模式所构成的任务之间的互补性,并探讨了不同功能组的相对优势。我们还引入了一个简单的分数组合机制,以利用不同功能组的互补性来完成这项任务。我们发现,强健的数据预处理与光谱-时热可接受场和HuBERT模型的分组合一起实现了我们最佳的ExVo-MultiTask测试分数0.412。