Given a graph $G=(V,E)$ on $n$ vertices and an assignment of colours to its edges, a set of edges $S \subseteq E$ is said to be rainbow if edges from $S$ have pairwise different colours assigned to them. In this paper, we investigate rainbow spanning trees in randomly coloured random $G_{k-out}$ graphs.
翻译:根据一张G$=(V,E)的图表,以美元为顶点,将彩色分配到它的边缘,如果美元为S=(V,E)的边缘配有两种不同的颜色,那么一组边缘的S$=eqseteq E$就被称为彩虹。在本文中,我们用随机颜色随机的 $Q ⁇ k-out} 图表来调查彩虹横跨树木的彩虹。