In this paper, we use the biological domain knowledge incorporated into stochastic models for ab initio RNA secondary-structure prediction to improve the state of the art in joint compression of RNA sequence and structure data (Liu et al., BMC Bioinformatics, 2008). Moreover, we show that, conversely, compression ratio can serve as a cheap and robust proxy for comparing the prediction quality of different stochastic models, which may help guide the search for better RNA structure prediction models. Our results build on expert stochastic context-free grammar models of RNA secondary structures (Dowell & Eddy, BMC Bioinformatics, 2004; Nebel & Scheid, Theory in Biosciences, 2011) combined with different (static and adaptive) models for rule probabilities and arithmetic coding. We provide a prototype implementation and an extensive empirical evaluation, where we illustrate how grammar features and probability models affect compression ratios.
翻译:在本文中,我们使用生物领域知识,将其纳入初步RNA二级结构预测的随机模型,以改进联合压缩RNA序列和结构数据的最新水平(Liu等人,BMC生物信息学,2008年)。 此外,我们表明,反之,压缩率可以作为一个廉价和有力的替代物,用来比较不同随机模型的预测质量,这可能有助于指导寻找更好的RNA结构预测模型。我们的结果以RNA二级结构(Dowell & Eddy,BMC生物信息学,2004年;Nebel & Scheid,生物科学理论,2011年)的专家随机环境无背景语法模型为基础,结合规则概率和算术编码的不同(静态和适应性)模型。我们提供了原型实施和广泛的经验评估,我们在这里说明了语法特征和概率模型如何影响压缩比率。