We settle the parameterized complexities of several variants of independent set reconfiguration and dominating set reconfiguration, parameterized by the number of tokens. We show that both problems are XL-complete when there is no limit on the number of moves and XNL-complete when a maximum length $\ell$ for the sequence is given in binary in the input. The problems are known to be XNLP-complete when $\ell$ is given in unary instead, and $W[1]$- and $W[2]$-hard respectively when $\ell$ is also a parameter. We complete the picture by showing membership in those classes. Moreover, we show that for all the variants that we consider, token sliding and token jumping are equivalent under pl-reductions. We introduce partitioned variants of token jumping and token sliding, and give pl-reductions between the four variants that have precise control over the number of tokens and the length of the reconfiguration sequence.
翻译:我们解决了独立设置的重新配置和主导性重新配置的若干变体的参数复杂性,这些变体以物证数量为参数参数。 我们显示,当输入的二进制中给出了序列的最大长度$\ ell美元时,当移动数量没有限制时,这两个问题都是XL-完成的。 当美元以单价表示时,问题就被称为XNLP-完成;当美元以美元计时,问题就被称为XNL-硬值,美元以美元计时,美元以美元计时,美元以美元计时,则以美元计时,美元计时,美元计时以美元计时,美元计时,美元计时以硬值计,美元计时,美元计时,美元计时,美元计时以美元计时,美元计时,美元计时以美元计时,美元计时,则以美元计时,以美元计数表示出这些类中的会籍。 此外,我们显示,对于我们认为的所有变体而言,象征性滑动和象征性跳跃等等值在 pl- 下。 我们引入了符号跳动和符号跳动的折式, 我们引入了符号跳动的折式, 在四个变体中, 我们引入了符号跳动和符号跳动的折式间,, 在四个变体间, 在四个变体间精确控制了对等式中, 在对代位体之间, 4变方之间, 在对代跳动和重置的代换式中, 和重置的代划和重序中, 在四个变体之间分别给予减减法中, 减法中, 。