Beyond data communications, commercial-off-the-shelf Wi-Fi devices can be used to monitor human activities, track device locomotion, and sense the ambient environment. In particular, spatial beam attributes that are inherently available in the 60-GHz IEEE 802.11ad/ay standards have shown to be effective in terms of overhead and channel measurement granularity for these indoor sensing tasks. In this paper, we investigate transfer learning to mitigate domain shift in human monitoring tasks when Wi-Fi settings and environments change over time. As a proof-of-concept study, we consider quantum neural networks (QNN) as well as classical deep neural networks (DNN) for the future quantum-ready society. The effectiveness of both DNN and QNN is validated by an in-house experiment for human pose recognition, achieving greater than 90% accuracy with a limited data size.
翻译:除数据通信外,商业现成的Wi-Fi设备可用于监测人类活动、跟踪设备动能和感知周围环境,特别是60千兆赫IEE 802.11ad/ay标准中固有的空间波束特性在管理费和这些室内遥感任务的频道测量颗粒性方面证明是有效的。在本文件中,我们调查转让学习情况,以在无线网络环境和环境随时间变化时减轻人类监测任务的域转移。作为概念证明研究,我们考虑为未来的量子成熟社会建立量子神经网络(QNN)以及经典的深神经网络(DNNN)。DNN和QNNN的有效性通过内部的人体外形识别实验得到验证,在有限的数据范围内实现超过90%的精确度。