This work presents a framework for studying temporal networks using zigzag persistence, a tool from the field of Topological Data Analysis (TDA). The resulting approach is general and applicable to a wide variety of time-varying graphs. For example, these graphs may correspond to a system modeled as a network with edges whose weights are functions of time, or they may represent a time series of a complex dynamical system. We use simplicial complexes to represent snapshots of the temporal networks that can then be analyzed using zigzag persistence. We show two applications of our method to dynamic networks: an analysis of commuting trends on multiple temporal scales, e.g., daily and weekly, in the Great Britain transportation network, and the detection of periodic/chaotic transitions due to intermittency in dynamical systems represented by temporal ordinal partition networks. Our findings show that the resulting zero- and one-dimensional zigzag persistence diagrams can detect changes in the networks' shapes that are missed by traditional connectivity and centrality graph statistics.
翻译:这项工作提供了一个使用zigzag持久性研究时间网络的框架,这是一个来自地形数据分析(TDA)领域的工具。由此形成的方法是一般性的,适用于各种时间变化的图表。例如,这些图表可能相当于一个模拟的网络,其边缘的重量是时间功能,或者它们代表着一个复杂的动态系统的时间序列。我们使用简化的复杂组合来代表时间网络的快照,然后用zigzag持久性来分析。我们显示了我们的方法在动态网络中的两种应用:分析多种时间尺度的通勤趋势,例如,在大不列颠运输网络中,每日和每周的通勤趋势,以及检测由于时间或地段分割网络所代表的动态系统中的相互偏差而导致的周期/健康过渡。我们的调查结果表明,由此产生的零和一维zigzag持久性图表可以探测到网络形状的变化,而传统的连通性和中心图形统计数据则忽略了这些变化。