The design and operation of modern energy systems are heavily influenced by time-dependent and uncertain parameters, e.g., renewable electricity generation, load-demand, and electricity prices. These are typically represented by a set of discrete realizations known as scenarios. A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution. However, the validation of generated scenarios is difficult, and a comprehensive discussion about appropriate validation methods is currently lacking. To start this discussion, we provide a critical assessment of the currently used validation methods in the energy scenario generation literature. In particular, we assess validation methods based on probability density, auto-correlation, and power spectral density. Furthermore, we propose using the multifractal detrended fluctuation analysis (MFDFA) as an additional validation method for non-trivial features like peaks, bursts, and plateaus. As representative examples, we train generative adversarial networks (GANs), Wasserstein GANs (WGANs), and variational autoencoders (VAEs) on two renewable power generation time series (photovoltaic and wind from Germany in 2013 to 2015) and an intra-day electricity price time series form the European Energy Exchange in 2017 to 2019. We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods. Our assessment shows that no single method sufficiently characterizes a scenario but ideally validation should include multiple methods and be interpreted carefully in the context of scenarios over short time periods.
翻译:现代能源系统的设计和运行受到基于时间和不确定的参数,例如可再生能源发电、负载需求和电力价格的严重影响,这些通常以一系列被称为假设情景的离散实现情况为代表。流行情景生成方法使用深度变异模型(DGM),允许在不事先假设数据分布的情况下生成假设情景。然而,很难对产生的假设情景进行验证,目前还缺乏关于适当验证方法的全面讨论。为开始这一讨论,我们对能源假设情景生成文献中目前使用的验证方法进行了批判性评估。特别是,我们根据概率密度、自动校正关系和电力光谱密度来评估验证方法。此外,我们提议使用多分形变异波动分析(MFDFA),作为非三角特征(如峰值、暴流和高原)的额外验证方法,我们对对抗性网络(GANs)、Wasserterstein GANs(WGANs)和变形自动自动解算器(VAEE)进行两次可再生能源生成时间序列的认真评估方法,但从2015年欧洲内部能源周期和风平法(Weal-deal disal disalal)的周期到20171717和201717年(Wial-de)中,我们内部能源周期的常规数据周期,我们内部和持续数据周期和2017和持续数据周期的周期的周期的周期和201718和持续数据解释方法,在2015年的周期和德国的常规和持续的周期和持续的周期)的周期和持续的周期,包括:我们内部能源周期,从20-时间和20-时间和20-时间和持续的周期的周期的周期的周期的周期的周期的周期的周期和持续的周期,从20—德国的周期的周期和持续的周期的周期的周期和20—德国的周期和持续的周期的周期的周期的周期的周期的周期的周期的周期和20-时间和持续的周期,将的周期和持续的周期的周期的周期的周期的周期的周期的汇率的周期和持续的周期和20—德国的周期和20—德国的周期和20—德国的周期的周期的周期的周期的周期的周期的周期的汇率和持续的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期的周期和持续的周期的周期