Image transformation, a class of vision and graphics problems whose goal is to learn the mapping between an input image and an output image, develops rapidly in the context of deep neural networks. In Computer Vision (CV), many problems can be regarded as the image transformation task, e.g., semantic segmentation and style transfer. These works have different topics and motivations, making the image transformation task flourishing. Some surveys only review the research on style transfer or image-to-image translation, all of which are just a branch of image transformation. However, none of the surveys summarize those works together in a unified framework to our best knowledge. This paper proposes a novel learning framework including Independent learning, Guided learning, and Cooperative learning, called the IGC learning framework. The image transformation we discuss mainly involves the general image-to-image translation and style transfer about deep neural networks. From the perspective of this framework, we review those subtasks and give a unified interpretation of various scenarios. We categorize related subtasks about the image transformation according to similar development trends. Furthermore, experiments have been performed to verify the effectiveness of IGC learning. Finally, new research directions and open problems are discussed for future research.
翻译:图像转换是一组视觉和图形问题,目标是学习输入图像和输出图像之间的绘图,在深层神经网络中迅速发展。在计算机视觉(CV)中,许多问题可被视为图像转换任务,例如语义分解和风格转换。这些作品有不同的专题和动机,使图像转换任务蓬勃发展。有些调查只审查关于风格转换或图像到图像转换的研究,所有这些只是图像转换的一个分支。然而,这些调查没有一份在我们最佳知识的统一框架内共同归纳这些内容。本文提出一个新的学习框架,包括独立学习、引导学习和合作学习,称为IGC学习框架。我们讨论的图像转换主要涉及一般图像到图像转换和深度神经网络的风格转换。从这个框架的角度来看,我们审查这些子任务,并对各种情景进行统一解释。我们按照类似的发展趋势对图像转换的相关子任务进行了分类。此外,我们进行了实验,以核实IGC学习的有效性。最后,我们讨论了新的研究方向和开放的问题,以便今后研究讨论。