We present a novel descriptor for crowd behavior analysis and anomaly detection. The goal is to measure by appropriate patterns the speed of formation and disintegration of groups in the crowd. This descriptor is inspired by the concept of one-dimensional local binary patterns: in our case, such patterns depend on the number of group observed in a time window. An appropriate measurement unit, named "trit" (trinary digit), represents three possible dynamic states of groups on a certain frame. Our hypothesis is that abrupt variations of the groups' number may be due to an anomalous event that can be accordingly detected, by translating these variations on temporal trit-based sequence of strings which are significantly different from the one describing the "no-anomaly" one. Due to the peculiarity of the rationale behind this work, relying on the number of groups, three different methods of people group's extraction are compared. Experiments are carried out on the Motion-Emotion benchmark data set. Reported results point out in which cases the trit-based measurement of group dynamics allows us to detect the anomaly. Besides the promising performance of our approach, we show how it is correlated with the anomaly typology and the camera's perspective to the crowd's flow (frontal, lateral).


翻译:我们为人群行为分析和异常检测提供了一个新型描述符。 目标是通过适当的模式测量人群组成和分裂速度的速度。 这个描述符受一维本地二进制模式概念的启发: 在我们的情况中, 这种模式取决于在时间窗口中观察到的群体数量。 一个叫“ trit” 的适当的测量单位( trint 位数) 代表了特定框架中三个可能的动态群体状态。 我们的假设是, 群体数目的突变可能是由于可以相应地检测到的异常事件造成的, 其方法是将这些变化转换成基于时间的三进制字符序列, 这些变化与描述“ no- anomaly ” 的字符顺序有很大不同。 由于这项工作背后的理由特殊, 依赖群体数量, 比较了三种不同的人群提取方法。 对运动- 感动基准数据进行了实验。 报告的结果指出, 在哪些情况下, 基于三进制的群动态测量可以让我们检测异常现象。 除了我们的方法有希望的表现之外, 我们展示了它是如何与反常态和摄像头的视角( ) 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
已删除
将门创投
12+阅读 · 2019年7月1日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Cross-Descriptor Visual Localization and Mapping
Arxiv
0+阅读 · 2020年12月2日
Arxiv
0+阅读 · 2020年11月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
已删除
将门创投
12+阅读 · 2019年7月1日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员