Automatic and accurate polyp segmentation plays an essential role in early colorectal cancer diagnosis. However, it has always been a challenging task due to 1) the diverse shape, size, brightness and other appearance characteristics of polyps, 2) the tiny contrast between concealed polyps and their surrounding regions. To address these problems, we propose a lesion-aware dynamic network (LDNet) for polyp segmentation, which is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme. Specifically, the designed segmentation head is conditioned on the global context features of the input image and iteratively updated by the extracted lesion features according to polyp segmentation predictions. This simple but effective scheme endows our model with powerful segmentation performance and generalization capability. Besides, we utilize the extracted lesion representation to enhance the feature contrast between the polyp and background regions by a tailored lesion-aware cross-attention module (LCA), and design an efficient self-attention module (ESA) to capture long-range context relations, further improving the segmentation accuracy. Extensive experiments on four public polyp benchmarks and our collected large-scale polyp dataset demonstrate the superior performance of our method compared with other state-of-the-art approaches. The source code is available at https://github.com/ReaFly/LDNet.
翻译:自动和准确的聚变分解在早期直肠癌诊断中发挥着必不可少的作用。然而,由于聚虫体的形状、大小、亮度和其他外观特征各不相同,这始终是一项具有挑战性的任务。(2) 隐藏的聚虫体及其周围区域之间的极小对比。为了解决这些问题,我们提议为聚分解建立一个致色色动态网络(LDNet)网络(LDNet),这是一个传统的u-shape 编解码器结构,与动态内核生成和更新计划相结合。具体地说,设计的分解头取决于输入图像的全球环境特征,并根据聚分解预测提取的偏差特征进行迭接更新。这一简单而有效的方案使我们的模型具有强大的分解性性能和一般化能力。此外,我们利用已提取的偏差代表来通过一个定制的偏差-觉交叉保护模块(LACA)来增强聚变和背景区域之间的特征对比,并设计一个高效的自留模块(ESA)来捕捉到远程背景关系,进一步提高分解的准确性,并用提取的偏差值根据聚/网络的偏差特性,根据聚合分解预测进行。在四种公共多盘/RePLD上进行广泛的实验,在四种公共分解/Re-regrop中,在四个公共分解方法上进行广泛的实验。我们收集的比较了其他的高级数据源。