This paper presents an automatic merging algorithm for autonomous driving vehicles, which decouples the specific motion planning problem into a Dual-Layer Automatic Merge Planning (DL_AMP) and a Descent-Based Trajectory Optimization (DBTO). This work leads to great improvements in finding the best merge opportunity, lateral and longitudinal merge planning and control, trajectory postprocessing and driving comfort.


翻译:本文件介绍了自动驾驶车辆的自动合并算法,该算法将具体的机动规划问题分解为双轨自动合并规划(DL_AMP)和基于世系的轨迹优化(DBTO ) 。 这项工作导致在寻找最佳合并机会、横向和纵向合并规划和控制、轨迹后处理和驾驶舒适方面大有改进。

0
下载
关闭预览

相关内容

面向健康的大数据与人工智能,103页ppt
专知会员服务
117+阅读 · 2020年12月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员