We present a generic and executable formalization of signature-based algorithms (such as Faug\`ere's $F_5$) for computing Gr\"obner bases, as well as their mathematical background, in the Isabelle/HOL proof assistant. Said algorithms are currently the best known algorithms for computing Gr\"obner bases in terms of computational efficiency. The formal development attempts to be as generic as possible, generalizing most known variants of signature-based algorithms, but at the same time the implemented functions are effectively executable on concrete input for efficiently computing mechanically verified Gr\"obner bases. Besides correctness the formalization also proves that under certain conditions the algorithms a-priori detect and avoid all useless reductions to zero, and return minimal signature Gr\"obner bases. To the best of our knowledge, the formalization presented here is the only formalization of signature-based Gr\"obner basis algorithms in existence so far.
翻译:我们在Isabelle/HOL校对助理中提出了基于签名的算法(如Faug ⁇ ere's $F_5$)的通用和可执行的正式化(如Faug ⁇ ere's $F_5$),用于计算Gr\'obner基础,以及它们的数学背景。在计算效率方面,上述算法目前是计算Gr\'obner基础的最佳已知算法。正式的开发尝试尽可能通用,将基于签名的算法中最已知的变种普遍化,但与此同时,所执行的功能在高效率计算机械核查的Gr\'obner基础的具体投入中可以有效执行。除了正确性外,正规化还证明在某些条件下,算算算法检测并避免所有无用的削减为零,并将最起码的签名Gr\\'obner基础返回到最低的签名。据我们所知,这里介绍的正式化是迄今存在的基于签名的Gr\'obner基础算法的唯一正式化。