Existential rules are a very popular ontology-mediated query language for which the chase represents a generic computational approach for query answering. It is straightforward that existential rule queries exhibiting chase termination are decidable and can only recognize properties that are preserved under homomorphisms. In this paper, we show the converse: every decidable query that is closed under homomorphism can be expressed by an existential rule set for which the standard chase universally terminates. Membership in this fragment is not decidable, but we show via a diagonalisation argument that this is unavoidable.
翻译:存在规则是一种非常受欢迎的以本体学为媒介的查询语言,对此,追逐代表了一种通用的计算解答方法。 直截了当的是,存在规则中显示追逐终止的询问是可变的,只能识别在同质主义下保存的属性。 在本文中,我们展示了相反的一面:在同质主义下封闭的每个可变查询都可以用一种存在规则来表达,而标准追逐则会普遍终止。 这一碎片中的成员资格是不可分解的,但我们通过对立性论证来显示这是不可避免的。