Linear error-correcting codes can be used for constructing secret sharing schemes, however finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values. These varieties give rise to $q$-divisible linear codes with at most $5$ weights. Furthermore, for $q$ odd these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, we prove that the secret sharing schemes thus obtained are democratic that is, each participant belongs to the same number of minimal access sets.


翻译:线性误差校正代码可用于构建秘密共享计划,但一般而言,发现这些秘密共享计划的接入结构,特别是确定高效接入结构是困难的。在这里,我们调查了某些代数超表层相对于有限字段的特性,这些字段的相交数与任何超高空飞机的相交数仅需要几个数值。这些品种产生了可互换的线性代码,其重量最多为5美元。此外,对于奇数的奇数来说,这些代码是最低的,我们根据它们的双重代码来描述秘密共享计划的接入结构。 事实上,我们证明由此获得的秘密共享计划是民主的,每个参与者都属于同样数量的最小接入套。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
佐治亚理工2020《数据库系统实现》课程,不可错过!
专知会员服务
23+阅读 · 2020年10月14日
专知会员服务
169+阅读 · 2020年8月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员