The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from $K$ ancestral populations. Each copy of each allele has the same chance $q_k$ to originate from population $k$, and together with the allele frequencies in all populations $p$ comprises the admixture model, which is the basis for software like {\sc STRUCTURE} and {\sc ADMIXTURE}. Here, we assume that $p$ is given through a finite reference database, and $q$ is estimated via maximum likelihood. Above all, we are interested in efficient estimation of $q$, and the variance of the estimator which originates from finiteness of the reference database, i.e.\ a variance in $p$. We provide a central limit theorem for the maximum-likelihood estimator, give simulation results, and discuss applications in forensic genetics.


翻译:个人混合(IA)概念假定个人基因组由祖传人口所继承的阿列斯人组成。 每一份阿列斯人的基因组都有同样的机会从人口(K)美元中产生,每份阿列斯人的基因组都有相同的机会从人口(K)美元中产生,与所有人口(A列斯人)的频率一起产生,每一份阿列斯人的基因组则由混合模型组成,该模型是诸如 ~sc STUCTURE 和 ~sc ADMIXTURE 等软件的基础。在这里,我们假定美元是通过一个有限的参考数据库提供的,而美元是通过最大可能性估算的。最重要的是,我们有兴趣有效地估算$(q),以及由参考数据库的有限性(即:_美元差异)产生的天线的差异。我们为最大相似的测算器提供了中心限值,提供模拟结果,并讨论法医遗传学的应用。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
4+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
4+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员