The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from $K$ ancestral populations. Each copy of each allele has the same chance $q_k$ to originate from population $k$, and together with the allele frequencies in all populations $p$ comprises the admixture model, which is the basis for software like {\sc STRUCTURE} and {\sc ADMIXTURE}. Here, we assume that $p$ is given through a finite reference database, and $q$ is estimated via maximum likelihood. Above all, we are interested in efficient estimation of $q$, and the variance of the estimator which originates from finiteness of the reference database, i.e.\ a variance in $p$. We provide a central limit theorem for the maximum-likelihood estimator, give simulation results, and discuss applications in forensic genetics.
翻译:个人混合(IA)概念假定个人基因组由祖传人口所继承的阿列斯人组成。 每一份阿列斯人的基因组都有同样的机会从人口(K)美元中产生,每份阿列斯人的基因组都有相同的机会从人口(K)美元中产生,与所有人口(A列斯人)的频率一起产生,每一份阿列斯人的基因组则由混合模型组成,该模型是诸如 ~sc STUCTURE 和 ~sc ADMIXTURE 等软件的基础。在这里,我们假定美元是通过一个有限的参考数据库提供的,而美元是通过最大可能性估算的。最重要的是,我们有兴趣有效地估算$(q),以及由参考数据库的有限性(即:_美元差异)产生的天线的差异。我们为最大相似的测算器提供了中心限值,提供模拟结果,并讨论法医遗传学的应用。