A $\lambda$-invariant measure of a sub-Markov chain is a left eigenvector of its transition matrix of eigenvalue $\lambda$. In this article, we give an explicit integral representation of the $\lambda$-invariant measures of subcritical Bienaym\'e--Galton--Watson processes killed upon extinction, i.e.\ upon hitting the origin. In particular, this characterizes all quasi-stationary distributions of these processes. Our formula extends the Kesten--Spitzer formula for the (1-)invariant measures of such a process and can be interpreted as the identification of its minimal $\lambda$-Martin entrance boundary for all $\lambda$. In the particular case of quasi-stationary distributions, we also present an equivalent characterization in terms of semi-stable subordinators. Unlike Kesten and Spitzer's arguments, our proofs are elementary and do not rely on Martin boundary theory.


翻译:亚马可夫链的 $lambda$- Watson 参数是其过渡矩阵的左半导体元值 $\ lambda$\ lambda$。 在本条中,我们明确代表了亚临界比亚基那伊姆\ e- Galton- Watson 进程在灭绝时即在撞击源头时死亡的 $lumbda$- 内变量值的变量值。 特别是, 这具有这些过程所有准静止分布的特点。 我们的公式扩展了该过程的( 1- ) 变量的 Kesten- Spitzer 公式, 并可以解释为所有\ lambda 美元 的最小的 $\ lambda$- Martin 入口边界。 在半静止分布的特定情况下, 我们还在半稳定的副协调员方面提出了等同的特征。 与 Kesten 和 Spitzer 的论据不同, 我们的证据是基本的, 并不依赖 Martin 边界理论 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员