Multivariate time series (MTS) forecasting has attracted much attention in many intelligent applications. It is not a trivial task, as we need to consider both intra-variable dependencies and inter-variable dependencies. However, existing works are designed for specific scenarios, and require much domain knowledge and expert efforts, which is difficult to transfer between different scenarios. In this paper, we propose a scale-aware neural architecture search framework for MTS forecasting (SNAS4MTF). A multi-scale decomposition module transforms raw time series into multi-scale sub-series, which can preserve multi-scale temporal patterns. An adaptive graph learning module infers the different inter-variable dependencies under different time scales without any prior knowledge. For MTS forecasting, a search space is designed to capture both intra-variable dependencies and inter-variable dependencies at each time scale. The multi-scale decomposition, adaptive graph learning, and neural architecture search modules are jointly learned in an end-to-end framework. Extensive experiments on two real-world datasets demonstrate that SNAS4MTF achieves a promising performance compared with the state-of-the-art methods.
翻译:多变时间序列(MTS)的预测在许多智能应用中引起了许多注意。这不是一个微不足道的任务,因为我们需要既考虑可变依赖性又考虑可变相互依存性。然而,现有的工程是为具体设想而设计的,需要大量领域知识和专家努力,难以在不同设想之间转移。在本文件中,我们建议为多边贸易体制的预测建立一个有比例的神经结构搜索框架(SNAS4MTF)。多尺度分解模块将原始时间序列转化为多尺度的子系列,可以保存多尺度的时间模式。适应性图表学习模块将不同时间尺度下的不同可变相互依存性推算出不同时间尺度下的不同相互依存性,而事先没有任何知识。对于多边贸易体系的预测,一个搜索空间旨在捕捉每个时间尺度上的可变依赖性和可变相互依存性。多尺度的解析、适应性图表学习和神经结构搜索模块是在一个端对端框架中共同学习的。对两种实体数据集进行的广泛实验表明,SNAS4MTF实现了与状态相比的有希望的业绩。