Convergence analysis of block iterative solvers for Hermitian eigenvalue problems and the closely related research on properties of matrix-based signal filters are challenging, and attract increasing attention due to their recent applications in spectral data clustering and graph-based signal processing. We combine majorization-based techniques pioneered for investigating the Rayleigh-Ritz method in [SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1521-1537] with tools of classical analysis of the block power method by Rutishauser [Numer. Math., 13 (1969), pp. 4-13] to derive convergence rate bounds of an abstract block iteration, wherein tuples of tangents of principal angles or relative errors of Ritz values are bounded using majorization in terms of arranged partial sums and tuples of convergence factors. Our novel bounds are robust in presence of clusters of eigenvalues, improve some previous results, and are applicable to most known block iterative solvers and matrix-based filters, e.g., to block power, Chebyshev, and Lanczos methods combined with shift-and-invert approaches and polynomial filtering.
翻译:由于最近在光谱数据集群和图形化信号处理中应用了光谱数据集群和图形化信号处理方法,因此,对埃米提亚电子元值问题和关于基于矩阵的信号过滤器特性的密切关联性研究的区块迭代求解器的集成分析具有挑战性,并引起越来越多的关注。我们把在[SIAM J. Masmex Anal. Appl., 31(2010), pp.521-1537]中为调查雷利利-里茨方法而先行采用的主要技术与鲁蒂沙祖尔[Numer. Math., 13(1969),pp.4-13]对区块动力法进行经典分析的工具结合起来,以得出一个抽象的区块隔式循环的汇合率界限,其中将主要角度的正切值或利茨值的相对误差用按安排的部分总和汇合因素的基质进行捆绑。我们的新版的界限在存在电子元值的集群中是牢固的,改进了以前的一些结果,并适用于最著名的区块迭代解解器和基于矩阵的过滤器的过滤器,例如,制动力、Chebyshev和兰茨结合了移动和移动和过滤法。