Predicting relative risk (RR) of spatial clusters is a complex task in public health that can be achieved through various statistical and machine-learning methods for different time intervals. However, high-resolution longitudinal data is often unavailable to successfully apply such methods. The goal of the present study is to further develop and test a new methodology proposed in our previous work for accurate sequential RR predictions in the case of limited lon gitudinal data. In particular, we first use a well-known likelihood ratio test to identify significant spatial clusters over user-defined time intervals. Then we apply a Markov chain modeling ap approach to predict RR values for each time interval. Our findings demonstrate that the proposed approach yields better performance with COVID-19 morbidity data compared to the previous study on mortality data. Additionally, increasing the number of time intervals enhances the accuracy of the proposed Markov chain modeling method.


翻译:预测空间聚类的相对风险是公共卫生领域的一项复杂任务,可通过针对不同时间间隔的各种统计和机器学习方法实现。然而,高分辨率的纵向数据往往难以获取,从而无法成功应用这些方法。本研究的目标是进一步开发和测试我们先前工作中提出的一种新方法,以在纵向数据有限的情况下实现准确的序列相对风险预测。具体而言,我们首先使用一种著名的似然比检验来识别用户定义时间间隔内的显著空间聚类。随后,我们应用马尔可夫链建模方法来预测每个时间间隔的相对风险值。我们的研究结果表明,与先前基于死亡率数据的研究相比,所提出的方法在使用COVID-19发病率数据时表现出更好的性能。此外,增加时间间隔的数量可以提高所提出的马尔可夫链建模方法的准确性。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员