Predicting relative risk (RR) of spatial clusters is a complex task in public health that can be achieved through various statistical and machine-learning methods for different time intervals. However, high-resolution longitudinal data is often unavailable to successfully apply such methods. The goal of the present study is to further develop and test a new methodology proposed in our previous work for accurate sequential RR predictions in the case of limited lon gitudinal data. In particular, we first use a well-known likelihood ratio test to identify significant spatial clusters over user-defined time intervals. Then we apply a Markov chain modeling ap approach to predict RR values for each time interval. Our findings demonstrate that the proposed approach yields better performance with COVID-19 morbidity data compared to the previous study on mortality data. Additionally, increasing the number of time intervals enhances the accuracy of the proposed Markov chain modeling method.
翻译:预测空间聚类的相对风险是公共卫生领域的一项复杂任务,可通过针对不同时间间隔的各种统计和机器学习方法实现。然而,高分辨率的纵向数据往往难以获取,从而无法成功应用这些方法。本研究的目标是进一步开发和测试我们先前工作中提出的一种新方法,以在纵向数据有限的情况下实现准确的序列相对风险预测。具体而言,我们首先使用一种著名的似然比检验来识别用户定义时间间隔内的显著空间聚类。随后,我们应用马尔可夫链建模方法来预测每个时间间隔的相对风险值。我们的研究结果表明,与先前基于死亡率数据的研究相比,所提出的方法在使用COVID-19发病率数据时表现出更好的性能。此外,增加时间间隔的数量可以提高所提出的马尔可夫链建模方法的准确性。