Calibration is a crucial step for the validation of computational models and a challenging task to accomplish. Dynamic Energy Budget (DEB) theory has experienced an exponential rise in the number of published papers, which in large part has been made possible by the DEBtool toolbox. Multimodal evolutionary optimisation could provide DEBtool with new capabilities, particularly relevant on the provisioning of equally optimal and diverse solutions. In this paper we present MultiCalib4DEB, a MATLAB toolbox directly integrated into the existing DEBtool toolbox, which uses multimodal evolutionary optimisation algorithms to find multiple global and local optimal and diverse calibration solutions for DEB models. MultiCalib4DEB adds powerful calibration mechanisms, statistical analysis, and visualisation methods to the DEBtool toolbox and provides a wide range of outputs, different calibration alternatives, and specific tools to strengthen the DEBtool calibration module and to aid DEBtool users to evaluate the performance of the calibration results.
翻译:动态能源预算(DEB)理论在已发表的论文数量上经历了指数式的上升,这在很大程度上是由DEB工具箱促成的。多模式进化优化可以为DEB工具箱提供新的能力,特别是在提供同样最佳和多样的解决办法方面,为DEB工具箱提供新的能力,尤其是与提供同样最佳和多样化的解决办法有关的能力。在本文件中,我们介绍了MUTCalib4DEB(MATLAB工具箱),该工具箱直接融入现有的DEB工具箱,该工具箱使用多式联运进化优化算法为DEB模型寻找多种全球和地方最佳和多样化校准解决方案。多功能Calib4DEB为DEB工具箱增添了强大的校准机制、统计分析和可视化方法,并提供范围广泛的产出、不同的校准替代方法和具体工具,以加强DEB工具校准模块,并帮助DEB工具用户评估校准结果的性能。